OXYGENATION OF 2,6-DI-t-BUTYLPHENOLS BEARING ELECTRON-WITHDRAWING GROUP AT 4-POSITION MEDIATED BY Co(II)-SCHIFF BASE COMPLEX

A. Nishinaga,* T. Shimizu, and T. Matsuura Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

4-Acyl-2, 6-di-t-butyl phenols except 3, 5-di-t-butyl-4-hydroxybenzaldehyde were oxygenated in the presence of Co(Salpr) exclusively at the ortho position to give the corresponding 3, 5-di-t-butyl-6-hydroperoxy-2, 4-cyclohexadienone derivatives in quantitative yield.

Co(Salpr) capable of binding dioxygen reversively to form a superoxo Co(III) complex is of particular interest in connection with biological oxygenations.¹ The complex has been shown to mediate oxygenation of 4-alkyl- and 4aryl-2,6-di-<u>t</u>-butylphenols resulting in the regioselective formation of peroxyquinolato Co(III) complexes,² where the regioselectivity is the same as that observed in the base-catalyzed oxygenation of these phenols.³ In the present paper, we wish to report that although 2,6-di-<u>t</u>-butylphenols with an electronwithdrawing group at the 4-position such as 4-acyl derivatives (1) and 2,6-di-<u>t</u>butyl-4-cyanophenol (5) are unsusceptible to base-catalyzed oxygenation, Co(Salpr) can mediate the oxygenation of these phenols, where dioxygen is incorporated unexpectedly only at the ortho position.

The oxygenation of phenols 1,⁴ although the reaction was slower than the Co(Salpr)-mediated oxygenation of 4-alkyl- and 4-aryl-2,6-di-<u>t</u>-butylphenols, gave 4-acyl-2,6-di-<u>t</u>-butyl-6-hydroperoxy-2,4-cyclohexadienones (2) quantitative-ly, which were isolated as crystals in excellent yield (Table 1). Values of carbonyl absorption bands and olefinic proton signals of the product 2 listed in Table 1 are typical ones for 2,4-cyclohexadienones.^{5,6} Chemical reactions of 2 also support the structure. That is, the reduction of 2c with dimethyl sulfide at room temperature gave 3-<u>t</u>-butyl-5-pyvaroylcatechol (3)⁷ instantly

5293

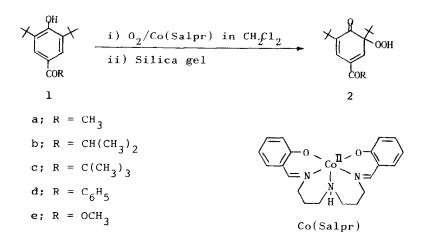
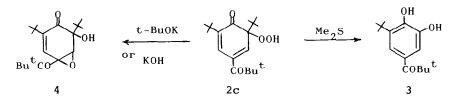
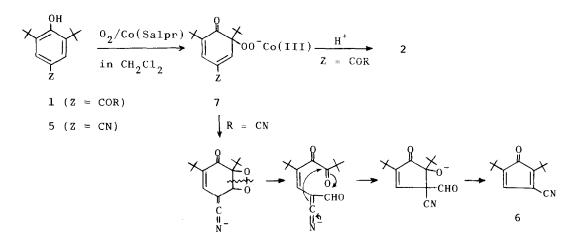



Table 1. Formation and Physical Data of 4-Acyl-2,6-di-t-butyl-6hydroperoxy-2,4-cyclohexadienones (2).^a


2	Yield ^b M.p. ^C		IR(Nujol), cm ⁻¹		¹ _H NMR(CDCl ₂), δ ppm				
	(%)	(°C)	OOH	C=0	t-Bu	0=C-C=C	н-с=сн ^а	OOH	R
2a	96	105	3370	16 8 5, 1675	0.99, 1.26	7.30	7.38	9.35	2.43
2b	98	115	3370	1685, 1670	1.00, 1.25	7.31	7.38	9.26	1.18(d) ^e 1.22(d) ^e 3.38(m) ^e
2c	98	112	3370	1670	0.98, 1.23	7.01	7.13	9.08	1.33(s)
2d	92	107	3460	1680, 1665	1.00, 1.27	7.05	7.28	9.45	7.3-8.0(m)
2e	93	92	3450	1720, 16 8 5	1.00, 1.27	7.17	7.48	8.72	3.87(s)

^a Oxygen was bubbled through a solution of 1 (1 mmol) and Co(Salpr)(1.1 mmol) in CH_2Cl_2 (20 ml) at room temperature for 4.5 h. Products were separated by layer chromatography (silica gel/ CH_2Cl_2). ^b Isolation yield based on conversion (60-70%). ^c Decomposition point. ^d A doublet of doublets, J = 2.4 Hz. ^e J = 7 Hz.

in quantitative yield, and the treatment of 2c with <u>t</u>-BuOK in <u>t</u>-BuOH or KOH in ethanol at room temperature gave 2,6-di-<u>t</u>-butyl-4-pyvaroyl-4,5-epoxy-6-hydroxy-2-cyclohexenone (4)⁸ quantitatively. Compound 4 was quite stable against <u>t</u>-BuOK in a hot <u>t</u>-BuOH solution, in contrast with epoxy-<u>o</u>-quinols of type 4 obtained from 4-aryl-2,6-di-<u>t</u>-butylphenols, which give 3-aryl-2,5-di-<u>t</u>-butylcyclopentadienones under the conditions.⁹ The stability of 4 against the base is due to the electron-withdrawing acyl group. The oxygenation of 5, on the other hand,

gave 3-cyano-2,5-di- \underline{t} -butylcyclopentadienone (6) in 60% yield.¹⁰ The formation of 6 can be considered analogous to the case of the oxygenation of 4-(N-alkylimino)methyl-2,6-di- \underline{t} -butylphenols mediated by Co(Salpr),¹¹ where <u>o</u>-peroxyguinolato Co(III) complexes undergo an intramolecular decomposition involving a symmetric cleavage of the peroxy bond in a dioxetane intermediate. The present oxygenation may therefore be rationalized by the following scheme. Dioxygen is incorporated exclusively into the ortho position to give o-peroxyguinolato

Co(III) complex intermediates (7), among which the intermediate formed from 5 is unstable.

Interestingly, the regioselectivity of dioxygen incorporation in the present oxygenation is in contrast to that observed in the reaction of phenoxy radicals of 2a, 2e, and 5 with a superoxo Co(III) complex,¹² where radical coupling took place selectively at the para position of the phenoxy radicals giving rise to the corresponding <u>p</u>-hydroperoxy-2,5-cyclohexadienones. It is therefore evident that no such radical coupling mechanism is involved in the present oxygenation. A mechanism involving direct incorporation of dioxygen into a phenolato Co(III) complex intermediate may be acceptable as suggested for Co(Salpr)mediated oxygenation of 4-alkyl- and 4-aryl-2,6-di-<u>t</u>-butylphenols.¹³

When oxygen was bubbled through a solution of $3,5-di-t-butyl-4-hydroxybenz-aldehyde and Co(Salpr) in CH₂Cl₂, no oxygenation of the substrate took place and dark brown precipitates, <math>C_{35}H_{44}O_4N_3Co$ (m.p. >250 °C), were obtained in good yield. Since the precipitated complex gave the starting phenol quantitatively upon treatment with an acid, it should be a Co(III)(Salpr) complex coordinated with an anion of this substrate, probably an enolate form, although no structural information was available because this complex is sparingly soluble in usual solvents.

References and Notes

- 1) R. D. Jones, D. A. Summerville, and F. Basolo, Chem. Rev., 79, 139 (1979).
- 2) A. Nishinaga, K. Nishizawa, H. Tomita, and T. Matsuura, J. Am. Chem. Soc., <u>99</u>, 1287 (1977).
 A. Nishinaga, H. Tomita, and T. Matsuura, Tetrahedron Lett., 2893 (1979).
- 3) A. Nishinaga, T. Itahara, T. Shimizu, and T. Matsuura, J. Am. Chem. Soc., <u>100</u>,1820 (1978).
 A. Nishinaga, T. Itahara, T. Matsuura, A. Rieker, D. Koch, K. Albert, and P. B. Hitchcock, ibid, 100, 1826 (1978).
- 4) Phenols la-d were readily prepared by acylation of 2,6-di-t-butylphenol with appropriate carboxylic acid in trifluoroacetic anhydride at room temperature. la: 147-148 °C; lb: 145-147 °C; lc: 137-139 °C; ld: 132-134 °C.
- 5) A. Nishinaga, K. Nishizawa, H. Tomita, and T. Matsuura, Synthesis, 270 (1977).
- 6) A. Ricker, W. Rundel, and H. Kessle, Z. Naturforsch. B, 24, 547 (1969).
- 7) Compound 3: colorless needles, m.p. 144-146 °C; ¹H NMR(CDCl₃), & 1.38(s, 9H), 1.42(s, 9H), 6.38(s,1H, OH), 7.54(d, 1H, J = 2.2 Hz), 7.60(d, 1H, J = 2.2 Hz), 7.97(s, 1H, OH).
- 8)Compound 4: colorless needles, m.p. 151-152 °C; ¹H NMR(CDCl₃), δ 0.98(s, 9H), 1.21(s, 9H), 1.23(s,9H), 3.80(d, 1H, J = 0.8 Hz), 6.76(d, 1H, J = 0.8 Hz), 4.03(s, 1H, OH).
- 9) A. Nishinaga, T. Itahara, T. Matsuura, A. Rieker, and D. Koch, Angew. Chem., <u>88</u>, 154 (1976)
- 10) Compound 6: orange needles, m.p. 61-62 °C; ¹H NMR(CDCl₃), δ 1.16(s, 9H), 1.33(s, 9H), 6.48 (s, 1H); IR(Nujol), 2230(CN), 1735(CO) cm⁻¹; UV(C₆H₁₂), λ_{max} 421 nm (ϵ , 510).
- 11) A. Nishinaga, T. Shimizu, and T. Matsuura, Tetrahedron Lett., 4097 (1980).
- 12) A. Nishinaga, H. Tomita, and T. Matsuura, Tetrahedron Lett., 3407 (1980).
- 13) A. Nishinaga, H. Tomita, T. Matsuura, S. Ooi, and K. Hirotsu, J. Chem. Soc Dalton (1981) in press.

(Received in Japan 5 September 1981)

5296